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A central function of the nervous system is
to use sensory information to infer the
causal structure of the external world. Ac-
cording to Bayes’ rule, the optimal way of
using this information is to calculate the
information’s likelihood under various
models of the environment, and to weight
this likelihood by the strength of prior be-
lief in each model to derive posterior
beliefs. In recent years, the influential hy-
pothesis has been advanced that Bayesian
inference represents a unifying principle
of neural computation (the Bayesian
brain hypothesis; Knill and Pouget, 2004).
This framework has been applied to many
topics, including vision, motor planning,
and behavioral conditioning (Courville et
al., 2006; Körding and Wolpert, 2006;
Yuille and Kersten, 2006), with the over-
arching goal of identifying how neural
computations implement optimal Bayes-
ian statistical principles.

One particular focus of this research
has been Bayesian belief updating: the
transformation of prior beliefs into poste-
rior beliefs when new information is ob-
served. Although functional magnetic
resonance imaging (fMRI) and electroen-
cephalography have been used to identify
some of the regions and processes in-

volved in belief updating (O’Reilly et al.,
2013; Bennett et al., 2015; Kolossa et al.,
2015), an important open question is
how these regions interact to update be-
liefs. Addressing this question would
represent a step beyond localization to-
ward a process-based account of the
neural mechanisms of Bayesian belief
updating.

In a recent paper published in The
Journal of Neuroscience, Vossel et al.
(2015) investigated this question using
fMRI data acquired from 18 healthy par-
ticipants completing a Posner cueing task
(Posner, 1980). In this task, participants
made visual saccades toward a target—a
suprathreshold Gabor patch—which ap-
peared either left or right of a central
fixation point. Before the target was dis-
played, the presentation of a left- or right-
pointing cue predicted the target location
with varying cue validity (CV), defined as
the proportion of cues that correctly pre-
dicted the target. Every 32–36 trials
throughout the experiment, CV was
changed pseudorandomly to one of
three levels (88%, 69%, 50%). Crucially,
participants were not aware in advance
of when or how CV would change, and
so had to learn these contingencies on
the basis of experience: a Bayesian infer-
ence problem.

To characterize trial-by-trial belief
updating, Vossel et al. (2015) analyzed be-
havioral data using a Bayesian computa-
tional model, the hierarchical Gaussian
filter (HGF; Mathys et al., 2011), which
has previously been successfully applied
to Posner cueing tasks (Vossel et al.,
2014). The HGF used response speed (RS)

as a dependent measure, and assumed
that RSs were generated by a bipartite sys-
tem consisting of a perceptual model,
which tracked beliefs about changing
CVs, and a response model, which
mapped belief strength onto RSs. The
HGF’s perceptual model took the form of
a three-level Gaussian hierarchy. At the
lowest level of this hierarchy were partici-
pants’ observations of validly and inval-
idly cued targets, assumed to be generated
by a latent trial-specific CV. At the second
level of the HGF hierarchy, CV evolved
across trials as a Gaussian random walk to
capture the fact that CVs were nonstation-
ary. At the third level of the HGF, the vol-
atility of the second-level random walk
itself changed over time as a Gaussian
random walk, capturing the fact that
participants experienced periods of
both stability and volatility during the
task. Second- and third-level random
walks were respectively parameterized by
participant-specific precision parameters
� and �, which were assumed to drive
individual differences in behavior. For
subsequent fMRI analyses, a key feature of
the HGF was that on each trial, it esti-
mated the attention-weighted precision of
beliefs, denoted �(�̂ (t )

1), which can be in-
terpreted as the proportion of attentional
resources allocated to the cued location
on a given trial.

Vossel et al. (2015) used these
participant- and trial-specific values of
�(�̂ (t )

1) to identify brain regions associ-
ated with Bayesian belief updating. fMRI
data were first analyzed using a general
linear model (GLM) with four first-level
regressors of interest: valid, invalid, left-
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ward, and rightward cues. Trial-specific
values of �(�̂ (t )

1) were then extracted
from the HGF and used to parametrically
modulate each of these four regressors.
Next, a second-level analysis located brain
regions where cue validity interacted with
the parametric effect of �(�̂ (t )

1) [indicat-
ing different �(�̂ (t )

1) regression slopes for
valid vs invalid cues]. This pattern was
taken to be indicative of a region’s in-
volvement in Bayesian belief updating,
since invalid cues violate expectancies
and signal a potential change in CV, and
should therefore trigger larger belief
updates than valid cues. Moreover, this
relationship should be modulated by
attention-weighted precision: when �(�̂(t)

1)
is high, as in a block with high CV, an
invalid cue is a stronger belief-updating
trigger than when �(�̂ (t )

1) is lower. Us-
ing these criteria, the second-level GLM
analysis identified three regions in-
volved in Bayesian belief updating: right
anterior putamen, right frontal eye
fields (FEF), and right temporo-parietal
junction (TPJ).

Next, to investigate how Bayesian be-
lief updating was implemented, these
three areas were designated as regions of
interest for dynamic causal modeling
(DCM) analysis. It was found that the
best-fitting DCM model was one in which
stronger beliefs [higher values of �(�̂(t)

1)]
were associated with decreased correla-
tion between TPJ and FEF activity for
validly cued trials, and with increased cor-
relation between TPJ and FEF activity on
invalidly cued trials (Vossel et al., 2015,
their Fig. 6). This was taken to indicate a
coupling between ventral (TPJ) and dor-
sal (FEF) streams of visual processing,
suggesting that coordinated activity be-
tween TPJ and FEF may reflect transmis-
sion of a belief-updating signal. Such a
signal could upregulate attention-related
dorsal stream activity when expectancies
were violated following invalid cues, and
downregulate activity following valid
cues. This conclusion is consistent with,
and provides a mechanistic explanation
for, previous work implicating TPJ in
Bayesian updating of internal models
of the environment (Geng and Vossel,
2013).

Although anterior cingulate cortex
(ACC) has been implicated in Bayesian
belief updating in previous research
(O’Reilly et al., 2013), ACC was not one of
the belief-updating regions identified by
Vossel et al. (2015). This inconsistency
may be driven by use of different belief-
updating metrics in different studies:
rather than define belief updates by an

interaction between CV and �(�̂ (t )
1),

O’Reilly et al. (2013) searched for re-
gions encoding belief-update magni-
tude. These different metrics might
therefore have identified distinct compo-
nents of a broader-scale belief-updating
network. Similarly, although ACC is
thought to encode environmental volatil-
ity in learning under uncertainty (Behrens
et al., 2007), Vossel et al. (2015) found no
significant effect of volatility in ACC or
any other brain region. One possible ex-
planation for this discrepancy is the Pos-
ner cueing task’s very short cue–target
interval (600 ms). Because of the poor
temporal resolution of fMRI, this would
have meant that the GLM analysis was un-
able to disentangle cue processing from
response execution. As a result, the fMRI
results of Vossel et al. (2015) may not be
directly comparable to past research by
Behrens et al. (2007). Future studies could
disentangle these discrete task stages using
a longer cue–target interval or by using a
technique with better temporal resolu-
tion, such as electroencephalography.

A particular strength of the study by
Vossel et al. (2015) was the manner in
which it combined Bayesian computa-
tional modeling with fMRI data analysis.
For both behavioral data and GLM analy-
sis, the authors were able to show that the
HGF fit data better than two non-
Bayesian competitor models: a Rescorla-
Wagner learning rule and a model
assuming participants knew the true CV
in each block. This supports the conclu-
sion that participants were behaving
Bayes-optimally. However, an important
caveat here is that the flexibility af-
forded to some Bayesian observer mod-
els by their parameterization and choice
of prior might mean that it is not possi-
ble to empirically falsify the hypothesis
that the brain acts as a Bayesian observer
(Daunizeau et al., 2010; Bowers and Da-
vis, 2012). Although it is strongly sugges-
tive that a Bayesian model explained both
behavioral and neural data better than
non-Bayesian competitors, this is not log-
ically sufficient to show that participants
necessarily acted as Bayesian observers.
Indeed, Vossel et al. (2015) do not make
this claim.

Moreover, it remains unclear whether
the assumption of Bayes-optimality in
the HGF is viable in more complex envi-
ronments than a Posner cueing task.
Payzan-LeNestour and Bossaerts (2011)
demonstrated that in complex environ-
ments, Bayesian models became increas-
ingly computationally intractable, and no

longer fit behavioral data better than non-
Bayesian competitors. Furthermore, even
in environments suitable for Bayesian in-
ference, simple heuristics can provide a
better account of behavior for consider-
able subsets of participants (Steyvers et al.,
2009; Bennett et al., 2015). A potential so-
lution to this problem is given by a recent
study showing that constraints based in
principles of efficient sensory coding
enabled a Bayesian model to explain
seemingly anti-Bayesian percepts (Wei
and Stocker, 2015). Similarly, constrain-
ing Bayesian observer models by neuro-
physiological principles such as capacity
limits on processing may allow these
models to be successfully applied to more
complex environments.

In summary, the work of Vossel et al.
(2015) provides a compelling synthesis
of behavioral modeling and neuroimag-
ing. By combining a sophisticated be-
havioral model with DCM analysis of
neural data, the authors identified po-
tential neural mechanisms of Bayesian
belief updating in deployment of spatial
attention. These findings represent a
valuable step toward a process-based ac-
count of belief updating in the Bayesian
brain.
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